Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus

نویسندگان

  • Jen-Wen Lin
  • Min-Pey Ding
  • Yau-Heiu Hsu
  • Ching-Hsiu Tsai
چکیده

The tertiary structure in the 3'-untranslated region (3'-UTR) of Bamboo mosaic virus (BaMV) RNA is known to be involved in minus-strand RNA synthesis. Proteins found in the RNA-dependent RNA polymerase (RdRp) fraction of BaMV-infected leaves interact with the radio labeled 3'-UTR probe in electrophoretic mobility shift assays (EMSA). Results derived from the ultraviolet (UV) cross-linking competition assays suggested that two cellular factors, p43 and p51, interact specifically with the 3'-UTR of BaMV RNA. p43 and p51 associate with the poly(A) tail and the pseudoknot of the BaMV 3'-UTR, respectively. p51-containing extracts specifically down-regulated minus-strand RNA synthesis when added to in vitro RdRp assays. LC/MS/MS sequencing indicates that p43 is a chloroplast phosphoglycerate kinase (PGK). When the chloroplast PKG levels were knocked down in plants, using virus-induced gene silencing system, the accumulation level of BaMV coat protein was also reduced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants.

The Bamboo mosaic virus (BaMV) is a positive-sense, single-stranded RNA virus. Previously, we identified that the chloroplast phosphoglycerate kinase (chl-PGK) from Nicotiana benthamiana is one of the viral RNA binding proteins involved in the BaMV infection cycle. Because chl-PGK is transported to the chloroplast, we hypothesized that chl-PGK might be involved in viral RNA localization in the ...

متن کامل

Host Factors Involved in the Intracellular Movement of Bamboo mosaic virus

Viruses move intracellularly to their replication compartments, and the newly synthesized viral complexes are transported to neighboring cells through hijacking of the host endomembrane systems. During these processes, numerous interactions occur among viral proteins, host proteins, and the cytoskeleton system. This review mainly focuses on the plant endomembrane network, which may be utilized ...

متن کامل

Ser/Thr Kinase-Like Protein of Nicotiana benthamiana Is Involved in the Cell-to-Cell Movement of Bamboo mosaic virus

To investigate the plant genes affected by Bamboo mosaic virus (BaMV) infection, we applied a cDNA-amplified fragment length polymorphism technique to screen genes with differential expression. A serine/threonine kinase-like (NbSTKL) gene of Nicotiana benthamiana is upregulated after BaMV infection. NbSTKL contains the homologous domain of Ser/Thr kinase. Knocking down the expression of NbSTKL ...

متن کامل

Nuclear-Encoded Plastidal Carbonic Anhydrase Is Involved in Replication of Bamboo mosaic virus RNA in Nicotiana benthamiana

On inoculation of Nicotiana benthamiana with Bamboo mosaic virus (BaMV), a gene with downregulated expression was found involved in the infection cycle of BaMV. To uncover how this downregulated gene affects the accumulation of BaMV in plants, we used loss- and gain-of-function experiments. Knockdown of this gene decreased the accumulation of BaMV coat protein to approximately 60% in both plant...

متن کامل

Promotion of Bamboo Mosaic Virus Accumulation in Nicotiana benthamiana by 5′→3′ Exonuclease NbXRN4

Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5' cap and a 3' poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein responsible for the viral RNA replication/transcription and 5' cap formation. To learn more about the replication complex of BaMV, a protein preparation enriched in the 155-kDa replication protein was obtained from Nicotiana benthamiana ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007